4.7 Article

Phase field model for three-dimensional dendritic growth with fluid flow

Journal

PHYSICAL REVIEW E
Volume 64, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.64.041602

Keywords

-

Ask authors/readers for more resources

We study the effect of fluid flow on three-dimensional (3D) dendrite growth using a phase-field model on an adaptive finite-element grid. In order to simulate 3D fluid flow, we use an averaging method for the flow problem coupled to the phase-field method and the semi-implicit approximated projection method (SIAPM). We describe a parallel implementation for the algorithm, using the CHARM+ + FEM framework, and demonstrate its efficiency. We introduce an improved method for extracting dendrite tip position and tip radius, facilitating accurate comparison to theory. We benchmark our results for 2D dendrite growth with solvability theory and previous results, finding them to be in good agreement. The physics of dendritic growth with fluid flow in three dimensions is very different from that in two dimensions, and we discuss the origin of this behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available