4.6 Article

Ceramide mediates tumor-induced dendritic cell apoptosis

Journal

JOURNAL OF IMMUNOLOGY
Volume 167, Issue 7, Pages 3773-3784

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.7.3773

Keywords

-

Categories

Funding

  1. NCI NIH HHS [1PO1 CA73743-04, 1RO1 CA82016-01A29, 5P30 CA47904-12] Funding Source: Medline

Ask authors/readers for more resources

Induction of apoptosis in dendritic cells (DC) is one of the escape mechanisms of tumor cells from the immune surveillance system. This study aimed to clarify the underlying mechanisms of tumor-induced DC apoptosis. The supernatants (SN) of murine tumor cell lines B16 (melanoma), MCA207, and MCA102 (fibrosarcoma) increased C16 and C24 ceramide as determined by electrospray mass spectrometry and induced apoptosis in bone marrow-derived DC. N-oleoylethanolamine or D-L-threo 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibits acid ceramidase or glucosylceramide synthase and then increases endogenous ceramide, enhanced DC apoptosis and ceramide levels in the presence of tumor SN. Pretreatment with L-cycloserine, an inhibitor of de novo ceramide synthesis, or phorbol ester, 12-O-tetradecanoylphorbol-13-acetate reduced endogenous ceramide levels and protected DC from tumor-induced apoptosis. However, other DC survival factors, including LPS and TNF-alpha, failed to do so. The protective activity of 12-O-tetradecanoylphorbol-13-acetate is abrogated by pretreatment with phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. Therefore, down-regulation of PI3K is the major facet of tumor-induced DC apoptosis. Tumor SN, N-oleoylethanolamine, or PDMP suppressed Akt, NF-kappaB, and bcl-x(L) in DC, suggesting that the accumulation of ceramide impedes PI3K-mediated survival signals. Taken together, ceramide mediates tumor-induced DC apoptosis by down-regulation of the PI3K pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available