4.6 Article

Self-consistent coupling of radiative transfer and dynamics in dust-driven winds

Journal

ASTRONOMY & ASTROPHYSICS
Volume 377, Issue 2, Pages 522-537

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20011115

Keywords

stars : mass loss; circumstellar matter; hydrodynamics; radiative transfer

Ask authors/readers for more resources

Models of stationary dust-driven winds of late-type stars are investigated. The ow is described successively using three models which couple, in spherical symmetry, the grain-gas dynamics in a self-consistent way with radiative transfer. Complete radiative transfer including multiple scattering, absorption and thermal emission is taken into account to determine the temperature of dust grains which in turn governs their thermal emission. The medium is not necessarily optically thin. The first model is used to check one classical hypothesis, that where the gas and the grains expand at the same velocity, the ow is described by a one-fluid model. This model is then improved in a second model, to include complete momentum coupling between gas and grains by friction. Finally, a third model includes grains and gas coupled by friction as well as the effects of inertial force on grains. By means of a numerical iteration, dynamics and radiative transfer are coupled in order to achieve a self-consistent solution in all cases. Even for fairly low non-zero optical depths, coupling of radiation with dynamics is found to be important for wind models which are all highly sensitive to input data. In conclusion, approximations (position and momentum coupling) for the dynamics should be relaxed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available