4.2 Article

Sex-Specific Heterosis in Line Crosses of Mice Selectively Bred for High Locomotor Activity

Journal

BEHAVIOR GENETICS
Volume 41, Issue 4, Pages 615-624

Publisher

SPRINGER
DOI: 10.1007/s10519-010-9432-3

Keywords

Artificial selection; Body size; Complementation; Experimental evolution; Heterosis; Hyperactivity; Voluntary exercise; Wheel running

Funding

  1. NSF [IOB-0543429]

Ask authors/readers for more resources

When populations with similar histories of directional selection are crossed, their offspring may differ in mean phenotype as compared with the average for the parental populations, often exhibiting enhancement of the mean phenotype (termed heterosis or hybrid vigor). We tested for heterosis in a cross of two replicate lines of mice selectively bred for high voluntary wheel running for 53 generations. Mice were paired to produce four sets of F1 offspring: two purebred High Runner (HR) lines and the hybrid reciprocal crosses. The purebred HR showed statistically significant, sex-dependent differences in body mass, wheel revolutions, running duration, mean running speed, and (controlling for body mass) organ masses (heart ventricles, liver, spleen, triceps surae muscle). Hybrid males ran significantly more revolutions than the purebred males, mainly via increased running speeds, but hybrid females ran intermediate distances, durations, and speeds, as compared with the purebred females. In both sexes, ventricles were relatively smaller in hybrids as compared with purebred HR. Overall, our results demonstrate differential and sex-specific responses to selection in the two HR lines tested, implying divergent genetic architectures underlying high voluntary exercise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available