4.6 Article

Command, control, and navigation experimental results with the NPS ARIES AUV

Journal

IEEE JOURNAL OF OCEANIC ENGINEERING
Volume 26, Issue 4, Pages 466-476

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/48.972079

Keywords

ARIES autonomous underwater vehicle; data fusion; Kalman filter; underwater vehicle communications and navigation

Ask authors/readers for more resources

This paper provides an overview of the Naval Postgraduate School ARIES autonomous underwater vehicle and its control and navigation performance. An attempt is made to highlight its current operational capabilities and provide a description of future enhancements for greater mission utility and flexibility. An overview of the vehicle design along with descriptions of all major hardware components and sensors is given. A major discussion of the implementation of a modular, multirate, multiprocess software architecture for the ARIES is provided. The architecture is designed to operate using either a single computer processor or two independent, cooperating processors linked through a network interface for improved load balancing. A dual computer implementation is presented here since each processor assumes different tasks for mission operation. Also included is a section on the underwater navigation method using a real-time extended Kalman filter that fuses all sensor data and computes the real time position, orientation, velocity, etc., of the vehicle. Experimental results for navigational accuracy using a DGPS/IMU/Doppler-aided navigation system are presented with DGPS pop-up maneuvers. Navigational accuracy is a requirement for the use of ARIES as a mobile communications network node. This work provides some examples of missions possible with such a node and the current state of its command and control system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available