3.8 Article Proceedings Paper

K+ conductance activated during regulatory volume decrease.: The channels in Ehrlich cells and their possible molecular counterpart

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S1095-6433(01)00428-7

Keywords

Ehrlich cells; regulatory volume decrease; potassium channel; mTASK-2; patch-clamp

Ask authors/readers for more resources

K+ currents activated by hypotonic cell swelling have been studied in Ehrlich ascites tumour cells by the whole-cell recording mode of the patch-clamp technique. K+ together with Cl- currents developed in the absence of added intracellular Ca2+ and with strong buffering of internal Ca2+ in experiments conducted at 37 degreesC. Manipulation of the extracellular medium with other cations suggests a selectivity sequence of K+ > Rb+ > NH4+ greater than or equal to Na+ congruent to Li+ congruent to Cs+. The current-voltage relationship of the volume-sensitive K+ current was well fitted with the Goldman-Hodgkin-Katz current equation between - 130 and 20 mV at both physiological and high K+ extracellular solutions. The class III antiarrhytmic drug clofilium blocked the volume-sensitive K+ current in a voltage-independent manner. Clofilium was also found to be a strong inhibitor of the regulatory volume decrease (RVD) response of Ehrlich cells. The leukotriene D-4 (LTD4) can activate the same current in isotonicity, consistent with a role for this compound in the signalling process of volume regulation. It is suggested that K+ channels activated by cell swelling belong to the so-called background K+ channel group. These are voltage-independent channels which underlie the resting potential of many cells and have recently been identified as belonging to a family of K+ channels with two pore domains in tandem (2P-4TM). Preliminary experiments show the presence of the TASK-2 channel, a member of the 2P-4TM family inhibited by acid extracellular pH, in Ehrlich cells and suggest that it might underlie the swelling-induced K+ current. (C) 2001 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available