4.5 Article

Cholesterol effects on the phosphatidylcholine bilayer nonpolar region:: A molecular simulation study

Journal

BIOPHYSICAL JOURNAL
Volume 81, Issue 4, Pages 2190-2202

Publisher

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(01)75867-5

Keywords

-

Categories

Ask authors/readers for more resources

A 15-ns molecular dynamics (MD) simulation of the fully hydrated dimyristoylphosphatidylcholine-cholesterol (DMPC-Chol) bilayer in the liquid-crystalline state was carried out to investigate the effect of Chol on the hydrocarbon chain region of the bilayer. The last 8-ns fragment of the generated trajectory was used for analyses. As a reference system, a pure DMPC bilayer (M. Pasenkiewiez-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi, 1999, Biophys. J. 76:1228-1240) simulated for 14 ns was used. The study shows that a Chol-induced increase of the bulk molecular order parameter along both beta- and gamma -chain is mainly caused by a decrease of the average tilt of the chains, because the bulk average number of gauche rotamers/myristoyl chain is not significantly changed by Chol. Nevertheless, for DMPCs located near Chol molecules both the number of gauche rotamers/chain and the chain tilt are decreased. The magnitude of the Chol effect on the PC alkyl chains depends, in addition to the PC-Chol distance, on the side of the Chol molecule (alpha- or beta -face) that the chains are in contact with. This study provides some new insight into the properties of the coexistence region of the partial phase diagram for DMPC-Chol bilayers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available