4.5 Article

Quantitative imaging of gene induction in living animals

Journal

GENE THERAPY
Volume 8, Issue 20, Pages 1572-1579

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3301554

Keywords

reporter gene; gene expression; positron emission tomography (PET); tetracycline transactivator; bi-directional promoter

Funding

  1. NCI NIH HHS [R01 CA82214-01, P01 1P50CA86306-01] Funding Source: Medline

Ask authors/readers for more resources

Methods to repeatedly, non-invasively, and quantitatively image gene expression in living animals are rapidly emerging and should fundamentally change studies of gene expression in vivo. We previously developed assays utilizing positron emission tomography (PET) to image reporter gene expression. In this paper we: (1) describe a new bi-directional, tetracycline-inducible system that can be used to pharmacologically induce target gene expression and to quantitatively image induced expression by using a PET reporter gene; (2) demonstrate the potential of this system in transient and stable cell transfection assays; and (3) demonstrate the ability to repetitively and quantitatively image tetracycline and tetracycline analog induction of gene expression in living animals. We utilize the dopamine type-2 receptor (D2R) and the mutant herpes-simplex virus type 1 thymidine kinase (HSV1-sr39tk) reporter genes to validate this system. We utilize microPET technology to show that quantitative tomographic imaging of gene induction is possible. We find a high correlation (r(2) = 0.98) between 'target' and reporter gene expression. This work establishes a new technique for imaging time-dependent variation of gene expression both from vectors with inducible promoters and in transgenic animals in which pharmacologic induction of gene expression must be monitored. These techniques may be applied both in gene therapy and for the study of gene expression in transgenic animals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available