4.5 Article

Application of the reverse Monte Carlo method to crystalline materials

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 34, Issue -, Pages 630-638

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S002188980100930X

Keywords

-

Ask authors/readers for more resources

An implementation of the reverse Monte Carlo (RMC) method for the study of crystalline materials from polycrystalline neutron total scattering data is presented. The new feature is that explicit account is taken of the intensities of Bragg peaks, which are extracted from the data using the Pawley method. The use of Bragg peaks ensures that the RMC models reproduce both the long-range and the short-range order reflected in the experimental data. The relative effects of different contributions to the data sets in the RMC method are assessed and successful applications are illustrated using the quartz and cristobalite polymorphs of silica as examples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available