4.6 Article

Regulation of vascular guanylyl cyclase by endothelial nitric oxide-dependent posttranslational modification

Journal

BASIC RESEARCH IN CARDIOLOGY
Volume 106, Issue 4, Pages 539-549

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00395-011-0160-5

Keywords

Nitric oxide; Endothelial nitric oxide synthase; Soluble guanylyl cyclase; S-Nitrosylation; Endothelial dysfunction

Funding

  1. Forschungskommission of the Heinrich-Heine-Universitat Dusseldorf [9772 109, 9772 345]

Ask authors/readers for more resources

In isolated cells, soluble guanylyl cyclase (sGC) activity is regulated by exogenous nitric oxide (NO) via downregulation of expression and posttranslational S-nitrosylation. The aim of this study was to investigate whether such regulatory mechanism impact on endothelium-dependent vasodilation in a newly developed mouse strain carrying an endothelial-specific overexpression of eNOS (eNOS(++)). When compared with transgene negative controls (eNOS(n)), eNOS(++)-mice showed a 3.3-fold higher endothelial-specific aortic eNOS expression, increased vascular cGMP and VASP phosphorylation, a L-nitroarginine (L-NA)-inhibitable decrease in systolic blood pressure, but normal levels of peroxynitrite and nitrotyrosine formation, endothelium-dependent aortic vasodilation and vasodilation to NO donors. Western blot analysis for sGC showed similar protein levels of sGC-alpha 1 and sGC-beta 1 subunits in eNOS(n) and eNOS(++). In striking contrast, the activity of isolated sGC was strongly decreased in lungs of eNOS(++). Semiquantitative evaluation of sGC-beta 1-S-nitrosylation demonstrated that this loss of sGC activity is associated with increased nitrosylation of the enzyme in eNOS(++), a difference that disappeared after L-NA-treatment. Our data suggest the existence of a physiologic NO-dependent posttranslational regulation of vascular sGC in mammals involving S-nitrosylation as a key mechanism. Because this mechanism can compensate for reduction in vascular NO bioavailability, it may mask the development of endothelial dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available