4.6 Article

Flame-retarding materials. II. Synthesis and flame-retarding properties of phosphorus-on-pendent and phosphorus-on-skeleton polyols and the corresponding polyurethanes

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 82, Issue 2, Pages 343-357

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/app.1858

Keywords

phosphorus-on-pendent copolymers; phosphorus-on-skeleton copolymers; flame-retarding ability

Ask authors/readers for more resources

A phosphorus-on-skeleton compound was synthesized by reacting phenyl dichlorophosphate (PDCP) with 2-hydroxyethyl methacrylate (HEMA). This monomer was then copolymerized with other acrylic monomers to form a hydroxy-containing copolymer, which was then used as the polyol in the synthesis of a polyurethane. Phosphorus-on-pendent copolymers and phosphorus-free copolymers and their corresponding polyurethanes were also prepared for comparison with the phosphorus-on-skeleton material in terms of their flame-retardant properties. The flame retardancy and degradation mechanism of these copolymers and polyurethanes were analyzed with thermogravimetric analysis (TGA) and infrared spectroscopy. Although those phosphorus-on-skeleton copolymer polyols have less flame-retarding ability than that of the phosphorus-on-pendent copolymer polyol because of less phosphorus content, it was evident that the phosphorus-on-skeleton polyurethanes were more effective flame retardants than the phosphorus-on-pendent polyurethanes. This was attributed to the fact that the crosslinking arising from the phosphorus-on-skeleton copolymer polyols has a tremendous effect on the flame-retarding ability of the corresponding polyurethanes. (C) 2001 John Wiley & Sons, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available