4.8 Article

Atomic-scale imaging of insulating diamond through resonant electron injection

Journal

NATURE
Volume 413, Issue 6856, Pages 616-619

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/35098053

Keywords

-

Ask authors/readers for more resources

The electronic properties of insulators such as diamond are of interest not only for their passive dielectric capabilities for use in electronic devices(1), but also for their strong electron confinement(2) on atomic scales. However, the inherent lack of electrical conductivity in insulators usually prevents the investigation of their surfaces by atomic-scale characterization techniques such as scanning tunnelling microscopy (STM). And although atomic force microscopy could in principle be used, imaging diamond surfaces has not yet been possible. Here, we demonstrate that STM can be used in an unconventional resonant electron injection mode to image insulating diamond surfaces and to probe their electronic properties at the atomic scale. Our results reveal striking electronic features in high-purity diamond single crystals, such as the existence of one-dimensional fully delocalized electronic states and a very long diffusion length for conduction-band electrons. We expect that our method can be applied to investigate the electronic properties of other insulating materials and so help in the design of atomic-scale electronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available