4.7 Article

ERK and p38 MAPK, but not NF-κB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts

Journal

CIRCULATION RESEARCH
Volume 89, Issue 8, Pages 661-669

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/hh2001.098873

Keywords

angiotensin II; interleukin-6; reactive oxygen species; mitogen-activated protein kinase; cardiac fibroblast

Ask authors/readers for more resources

We recently reported that angiotensin II (Ang II) induced IL-6 mRNA expression in cardiac fibroblasts, which played an important role in Ang II-induced cardiac hypertrophy in paracrine fashion. The present study investigated the regulatory mechanism of Ang II-induced IL-6 gene expression, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts. Ang II increased intracellular ROS in cardiac fibroblasts, and the increase was completely inhibited by the AT-I blocker candesartan and the NADH/NADPH oxidase inhibitor diphenyleneiodonium (DPI). We first confirmed that antioxidant N-acetylcysteine, superoxide scavenger Tiron, and DPI suppressed Ang II-induced IL-6 expression. Because we observed that exogenous H2O2 also increased IL-6 mRNA, the signaling pathways downstream of Ang II and exogenous H2O2 were compared. Ang II, as well as exogenous H2O2, activated ERK, p38 MAPK, and JNK, which were significantly inhibited by N-acetylcysteine and DPI. In contrast with exogenous H2O2, however, Ang II did not influence phosphorylation and degradation of I kappaB-alpha/beta or nuclear translocation of p65, nor did it increase NF-KB promoter activity. PD98059 and SB203580 inhibited Ang II-induced IL-6 expression. Truncation and mutational analysis of the IL-6 gene promoter showed that CRE was an important cis-element in Ang II-induced IL-6 gene expression. NF-KB-binding site was important for the basal expression of IL-6, but was not activated by Ang II. Ang II phosphorylated CREB through the ERK and p38 MAPK pathway in a ROS-sensitive manner. Collectively, these data indicated that Ang II stimulated ROS production via the ATI receptor and NADH/NADPH oxidase, and that these ROS mediated activation of MAPKs, which culminated in IL-6 gene expression through a CRE-dependent, but not NF-kappaB-dependent, pathway in cardiac fibroblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available