4.7 Article

Late Pleistocene evolution of the ocean's carbonate system

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 192, Issue 2, Pages 109-124

Publisher

ELSEVIER
DOI: 10.1016/S0012-821X(01)00430-7

Keywords

carbonate compensation depth; solution; sea-level changes; stable isotopes; ocean circulation; upper Pleistocene

Ask authors/readers for more resources

We demonstrate that the carbonate record from a single site (Ocean Drilling Program Site 1089) in the deep South Atlantic represents a qualitative, high-resolution record of the temporal evolution of the carbonate saturation state of the deep sea. The record is especially notable because it is free from many of the complications that limit other records (low sedimentation rates, blurring by chemical erosion, bioturbation, etc.). The pattern of carbonate variability is characteristic of Indo-Pacific cores with high-carbonate glacials and low-carbonate interglacials. Wt% carbonate lags changes in benthic delta O-18 by an average of similar to 7.6 kyr, and carbonate variations are in-phase with the rate of change (first derivative) of benthic delta O-18. Intense dissolution occurs at the transition from interglacial to glacial periods and increased preservation occurs during deglaciations. These observations represent two fundamentally different responses of the marine carbonate system. The lagged response of carbonate to 6180 reflects a steady-state mass balance process whereby the lysocline adjusts to maintain alkalinity balance between riverine input and marine burial. The Site 1089 carbonate signal is remarkably similar to inferred changes in the Sr/Ca of seawater for the past 250 kyr, which implies that both carbonate dissolution and seawater Sr/Ca may be controlled by sea level-induced changes in the location of carbonate deposition (shelf-basin fractionation) during glacial to interglacial cycles. The transient change in preservation during the transitions into and out of glacial stages reflects a response of the carbonate system to a redistribution of alkalinity and DIC in the ocean (i.e. carbonate compensation). Comparison of the Site 1089 carbonate and Vostok pCO(2) records suggests a role of deep-sea [CO32-] variations for governing at least some second-order features of the atmospheric pCO, signal. In order to quantify this role, however, measurement of indices of dissolution along a true depth transect. will be required to estimate the magnitudes of changes in deep-sea [CO32-]. (C) 2001 Elsevier 3 Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available