4.8 Article

The role of acetylation in rDNA transcription

Journal

NUCLEIC ACIDS RESEARCH
Volume 29, Issue 20, Pages 4114-4124

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/29.20.4114

Keywords

-

Funding

  1. NCI NIH HHS [R01 CA083979, 5R01CA83979] Funding Source: Medline
  2. NIGMS NIH HHS [GM46991] Funding Source: Medline

Ask authors/readers for more resources

Treatment of NIH 3T3 cells with trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), resulted in a dose-dependent increase in transcription from a rDNA reporter and from endogenous rRNA genes. Chromatin immunoprecipitation using anti-acetyl-histone H4 antibodies demonstrated a direct effect of TSA on the acetylation state of the ribosomal chromatin. TSA did not reverse inhibition of transcription from the rDNA reporter by retinoblastoma (Rb) protein, suggesting that the main mechanism by which Rb blocks rDNA transcription may not involve recruitment of deacetylases to rDNA chromatin. Overexpression of histone transacetylases p300, CBP and PCAF stimulated transcription in transfected NIH 3T3 cells. Recombinant p300, but not PCAF, stimulated rDNA transcription in vitro in the absence of nucleosomes, suggesting that the stimulation of rDNA transcription by TSA might have a chromatin-independent component. We found that the rDNA transcription factor UBF was acetylated in vivo. Finally, we also demonstrated the nucleolar localization of CBP. Our results suggest that the organization of ribosomal chromatin of higher eukaryotes is not static and that acetylation may be involved in affecting these dynamic changes directly through histone acetylation and/or through acetylation of UBF or one of the other components of rDNA transcription.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available