4.8 Article

Forkhead transcription factors contribute to execution of the mitotic programme in mammals

Journal

NATURE
Volume 413, Issue 6857, Pages 744-747

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/35099574

Keywords

-

Ask authors/readers for more resources

Cell cycle progression is a process that is tightly controlled by internal and external signals. Environmental cues, such as those provided by growth factors, activate early signals that promote cell cycle entry(1-3). Cells that have progressed past the restriction point become independent of growth factors, and cell cycle progression is then controlled endogenously. The phosphatidylinositol 3OH kinase (PI(3)K)/protein kinase B (PKB) pathway must be activated in G1 to inactivate forkhead transcription factors (FKH-TFs)(4,5) and allow cell cycle entry(2,3). Here we show that subsequent attenuation of the PI(3)K/PKB pathway is required to allow transcriptional activation of FKH-TF in G2. FKH-TF activity in G2 controls mammalian cell cycle termination, as interference with FKH transcriptional activation by disrupting PI(3)K/PKB downregulation, or by expressing a transcriptionally inactive FKH mutant, induces cell accumulation in G2/M, defective cytokinesis, and delayed transition from M to G1 of the cell cycle. We demonstrate that FKH-TFs regulate expression of mitotic genes such as cyclin B and polo-like kinase (Plk). Our results support the important role of forkhead in the control of mammalian cell cycle completion, and suggest that efficient execution of the mitotic programme depends on downregulation of PI(3)K/PKB and consequent induction of FKH transcriptional activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available