4.5 Article

Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections

Journal

BRAIN RESEARCH
Volume 916, Issue 1-2, Pages 172-191

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(01)02890-6

Keywords

hypothalamus; neuropeptide; GABA; circadian rhythm

Categories

Funding

  1. NINDS NIH HHS [NS-16304] Funding Source: Medline

Ask authors/readers for more resources

The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker of the mammalian circadian timing system. The SCN is composed of two anatomically and functionally distinct subdivisions, designated core and shell, which can be distinguished on the basis of their chemo architecture and connections in the rat. In the present study, we examine the intrinsic organization and the afferent and efferent connections of the mouse SCN using immunocytochemistry and ocular injections of cholera toxin. Neurons of the SCN shell contain GABA, calbindin (CALB), arginine vasopressin (AVP), angiotensin H (AH) and met-enkephalin (mENK), and receive input from galanin (GAL) and vasoactive intestinal polypeptide (VIP) immunoreactive fibers. Neurons of the SCN core synthesize GABA, CALB, VIP, calretinin (CALR), gastrin releasing peptide (GRP), and neurotensin (NT), and receive input from the retina and from fibers that contain neuropeptide Y (NPY) and 5-hydroxytryptamine (5HT). Fibers projecting from SCN neurons that are immunoreactive for AVP and VIP exhibit a characteristic morphology, and project to the lateral septum, a series of medial hypothalamic areas extending from the preoptic to the posterior hypothalamic area and to the paraventricular thalamic nucleus. The organization of the mouse SCN, and its connections, are similar to that in other mammalian species. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available