4.6 Article

Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition

Journal

APPLIED PHYSICS LETTERS
Volume 79, Issue 18, Pages 2970-2972

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1415411

Keywords

-

Ask authors/readers for more resources

We report experimental evidence showing a direct correlation between the alignment of carbon nanofibers (CNFs) prepared by plasma-enhanced chemical-vapor deposition and the location of the catalyst particle during CNF growth. In particular, we find that CNFs that have a catalyst particle at the tip (i.e., growth proceeds from the tip) align along the electric-field lines, whereas CNFs with the particle at the base (i.e., growth proceeds from the base) grow in random orientations. We propose a model that explains the alignment process as a result of a feedback mechanism associated with a nonuniform stress (part tensile, part compressive) that is created across the interface of the catalyst particle with the CNF due to electrostatic forces. Furthermore, we propose that the alignment seen recently in some dense CNF films is due to a crowding effect and is not directly the result of electrostatic forces. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available