4.7 Article

Structure formation from mesoscopic soft particles -: art. no. 051603

Journal

PHYSICAL REVIEW E
Volume 64, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.64.051603

Keywords

-

Ask authors/readers for more resources

In this work, the aggregation of mesoscopic gel particles (soft colloids) has been experimentally investigated. The interaction between particles was controlled through the addition of salt, above the critical coagulation concentration, resulting in aggregation with finite bond energies. Attention has been paid to the structure of the clusters formed in the process as well as to the aggregation kinetics. The results indicate that the clusters are fractal and the kinetics of aggregation can be described through the dynamic scaling solution of the Smoluchowski equation. As the energy minimum increases in depth the resultant clusters pass from a very compact structure to typical diffusion-limited cluster aggregation (DLCA) fractal dimension values. In addition, the kinetics of growth change from those observed in reaction controlled aggregation to DLCA. These results can be explained within the framework of a reversible growth model, arising from the fact that aggregation takes place in an energy minimum of restricted depth. Moreover, they show that structure and kinetics decouple for such a soft sphere system, in contrast to what is encountered for DLCA and reaction-limited processes. Finally, an unexpected return to a reaction controlled aggregation kinetics was observed for-sufficiently deep energy minima, which could be due to the polymerlike particularities of the soft particles considered in this work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available