4.8 Article

Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles

Journal

NATURE GENETICS
Volume 29, Issue 3, Pages 295-300

Publisher

NATURE AMERICA INC
DOI: 10.1038/ng755

Keywords

-

Ask authors/readers for more resources

Many biological signaling pathways involve autocrine ligand-receptor loops; misregulation of these signaling loops can contribute to cancer phenotypes. Here we present an algorithm for detecting such loops from gene expression profiles. Our method is based on the hypothesis that for some autocrine pathways, the ligand and receptor are regulated by coupled mechanisms at the level of transcription, and thus ligand-receptor pairs comprising such a loop should have correlated mRNA expression. Using our database of experimentally known ligand-receptor signaling partners, we found examples of ligand-receptor pairs with significantly correlated expression in five cancer-based gene expression datasets. The correlated ligand-receptor pairs we identified are consistent with known autocrine signaling events in cancer cells. In addition, our algorithm predicts new autocrine signaling loops that can be verified experimentally. Chemokines were commonly members of these potential autocrine pathways. Our analysis also revealed ligand-receptor pairs with expression patterns that may indicate cellular mechanisms for preventing autocrine signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available