4.7 Article

Insulin secretion to glucose as well as nonglucose stimuli is impaired in spontaneously diabetic Nagoya-Shibata-Yasuda mice

Journal

METABOLISM-CLINICAL AND EXPERIMENTAL
Volume 50, Issue 11, Pages 1282-1285

Publisher

W B SAUNDERS CO
DOI: 10.1053/meta.2001.27198

Keywords

-

Ask authors/readers for more resources

To clarify the mechanisms of impaired insulin secretion in Nagoya-Shibata-Yasuda (NSY) mice, an inbred strain of mice with spontaneous development of type 2 (non-insulin-dependent) diabetes mellitus, the insulin response to glucose (5.5 to 27.8 mmol/L) and nonglucose stimuli (glibenclamide, arginine, and BayK8644, a Ca-channel opener) was studied in vitro using isolated islets from male NSY and control C3H/He mice at 36 weeks of age by the batch incubation method. Insulin response to 5.5 mmol/L glucose was not significantly different between NSY and C3H/He mice, but insulin response to a high concentration of glucose (greater than or equal to 11.1 mmol/L) was significantly smaller in NSY mice than in control C3H/He mice. The dose-response curve of insulin secretion showed a markedly reduced maximum response, but almost normal glucose sensitivity in NSY islets. Insulin responses to glibenclamide (1 mmol/L), arginine (20 mmol/L), and BayK8644 (0.1 mmol/L) were also significantly smaller in NSY mice than in C3H/He mice. Insulin content of islets, in contrast, was significantly higher in NSY mice than in C3H/He mice. The impaired insulin response to glucose and nonglucose stimuli together with higher insulin content in islets in the NSY mouse suggest that a defect in voltage-dependent Ca2+-channel or thereafter in the cascade of insulin secretion may be responsible for impaired insulin secretion in NSY mice. NSY mice, therefore, could be a novel animal model of type 2 diabetes with a defect in insulin secretion at a different site from that in previously known animal models. Copyright (C) 2001 by W.B. Saunders Company.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available