4.7 Article

Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence

Journal

PHYSICS OF FLUIDS
Volume 13, Issue 11, Pages 3365-3385

Publisher

AIP Publishing
DOI: 10.1063/1.1403336

Keywords

-

Ask authors/readers for more resources

We derive analytic criteria for the existence of hyperbolic (attracting or repelling), elliptic, and parabolic material lines in two-dimensional turbulence. The criteria use a frame-independent Eulerian partition of the physical space that is based on the sign definiteness of the strain acceleration tensor over directions of zero strain. For Navier-Stokes flows, our hyperbolicity criterion can be reformulated in terms of strain, vorticity, pressure, viscous and body forces. The special material lines we identify allow us to locate different kinds of material structures that enhance or suppress finite-time turbulent mixing: stretching and folding lines, Lagrangian vortex cores, and shear jets. We illustrate the use of our criteria on simulations of two-dimensional barotropic turbulence. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available