4.4 Article

Field-scale electrical conductivity mapping for delineating soil condition

Journal

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL
Volume 65, Issue 6, Pages 1829-1837

Publisher

WILEY
DOI: 10.2136/sssaj2001.1829

Keywords

-

Categories

Ask authors/readers for more resources

Traditional sampling methods are inadequate for assessing the interrelated physical, chemical, and biological soil properties responsible for variations in agronomic yield and ecological potentials across a landscape. Recent advances in computers, global positioning systems, and large-scale sensors offer new opportunities for mapping heterogeneous patterns in soil condition. We evaluated field-scale apparent electrical conductivity (EC.) mapping for delineating soil properties correlated with productivity and ecological properties. A contiguous section of farmland (250 ha), managed as eight fields in a no-till winter wheat (Triticum aestivum L.)-corn (Zea mays L.)-millet (Panicum miliaceum L.)-fallow rotation, was EC. mapped (approximate to 0- to 30-cm depth). A geo-referenced soil-sampling scheme separated each field into four EC. classes that were sampled (0- to 7.5- and 7.5- to 30-cm depths) in triplicate. Soil physical parameters (bulk density, moisture content, and percentage clay), chemical parameters (total and particulate organic matter [POM], total C and N, extractable P, laboratory-measured electrical conductivity [EC1:1], and pH), biological parameters (microbial biomass C [MBC] and N [MBN], and potentially mineralizable N), and surface residue mass were significantly different among EC. classes (P less than or equal to 0.06) at one or both depths (0-7.5 and G-30 cm). Bulk density, percentage clay, EC1:1, and pH were positively correlated with EC.; all other soil parameters and surface residue mass were negatively correlated. Field-scale EC. classification delimits distinct zones of soil condition, providing an effective basis for soil sampling. Potential uses include assessing temporal impacts of management on soil condition and managing spatial variation in soil-condition and yield-potential through precision agriculture and site-specific management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available