4.5 Article

Analysis of genes expressed during rice -: Magnaporthe grisea interactions

Journal

MOLECULAR PLANT-MICROBE INTERACTIONS
Volume 14, Issue 11, Pages 1340-1346

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI.2001.14.11.1340

Keywords

-

Ask authors/readers for more resources

Expressed sequence tag (EST) analysis was applied to identify rice genes involved in defense responses against infection by the blast fungus Magnaporthe grisea and fungal genes involved in growth within the host during a compatible interaction. A total of 511 clones was sequenced from a cDNA library constructed from rice leaves (Oryza sativa cv. Nipponbare) infected with M. grisea strain 70-15 to generate 296 nonredundant ESTs. The sequences of 293 clones (57.3%) significantly matched National Center for Biotechnology Information database entries; 221 showed homologies with previously identified plant genes and 72 with fungal genes. Among the genes with assigned functions, 32.8% were associated with metabolism, 29.4% with cell/organism defense or pathogenicity, and 18.4% with gene/protein expression. cDNAs encoding a type I metallothionein (MTs-1) of rice and a homolog of glucose-repressible gene 1 (GRG1) of Neurospora crassa were the most abundant representatives of plant and fungal genes, comprising 2.9 and 1.6% of the total clones, respectively. The expression patterns of 10 ESTs, five each from rice and M. grisea were analyzed. Five defense-related genes in rice, including four pathogenesis-related genes and MTs-1, were highly expressed during M. grisea infection. Expression of five stress-inducible or pathogenicity-related genes of the fungus, including two hydrophobin genes, was also induced during growth within the host. Further characterization of the genes represented in this study would be an aid. in unraveling the mechanisms of pathogenicity of M. grisea and the defense responses of rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available