4.5 Article

Trapping of a covalent enzyme intermediate in the reaction of Bacillus macerans cyclomaltodextrin glucanyltransferase with cyclomaltohexaose

Journal

CARBOHYDRATE RESEARCH
Volume 336, Issue 1, Pages 47-53

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0008-6215(01)00247-6

Keywords

cyclomaltodextrins; cyclomaltodextrin glucanyltransferase; CGTase; enzyme mechanism; transglycosylation reactions

Ask authors/readers for more resources

The mechanism of catalysis of Bacillus macerans cyclomaltodextrin glucanyltransferase (CGTase, EC 2.4.1.19) was studied by trapping and isolating a covalent-enzyme intermediate. CGTase catalyzes an acceptor or coupling reaction between cyclomaltohexaose and a carbohydrate acceptor such as D-glucose. CGTase was incubated with H-3-labeled cyclomaltohexaose in the absence of any added acceptor. After 30 s of reaction, the enzyme was rapidly denatured and precipitated by the addition of 10% trifluoroacetic acid (TFA). Extensive washing of the precipitated protein showed retention of radioactivity with the protein. The precipitate was dissolved in 0.1 M TFA, containing 6 M urea and passed over a BioGel P-10 column. The protein fraction retained 95% of its original radioactivity. The reaction with [H-3]cyclomaltohexaose was also stopped by the addition of TFA to give an inactive enzyme at pH 2.5. The enzyme was separated from unreacted cyclomaltohexaose on a BioGel P-10 column and was shown to be radioactive. When the radioactive protein fraction was rechromatographed on BioGel P-10, it retained 100% of the label. These results demonstrate the formation of a covalent carbohydrate-enzyme intermediate in the reactions catalyzed by CGTase. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available