4.6 Article

Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation

Journal

JOURNAL OF IMMUNOLOGY
Volume 167, Issue 9, Pages 5004-5010

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.9.5004

Keywords

-

Categories

Ask authors/readers for more resources

Apoptotic cell death is an established mechanism to terminate an inflammatory response in rodent or human brains. Microglia, as the resident phagocyte, is a strong candidate for the clearance of apoptotic lymphocytes. Apoptosis was induced in cultured autologous thymocytes and in myelin basic protein (MBP)-specific, encephalitogenic T cells from Lewis rats by the addition of 0.1 mug/ml methylprednisolone. The amount of phagocytosis of apoptotic cells was assessed using an in vitro phagocytosis assay. Supernatants were collected to measure microglial cytokine secretion. The state of immune activation in microglia was investigated by a T cell proliferation assay and by flow cytometric analysis of microglial surface expression of immune molecules. Microglia ingested specifically apoptotic cells (apoptotic thymocytes as well as MBP-specific T cells) in contrast to nonapoptotic control cells (p < 0.0001). Subsequent secretion of the proinflammatory cytokines TNF-alpha and IL-12 was significantly decreased, while the secretion of IL-10 and TGF-beta was not affected. Furthermore, ingestion of apoptotic cells led to increased microglial MHC class II expression without concomitant increase in MHC class I, costimulatory molecules, and ICAM expression. The Ag-specific activation of MBP-specific T cells in cocultures with microglia that had ingested apoptotic cells was significantly less than that of identical T cells that interacted with nonphagocytosing microglia. Together with negative results obtained in a trans-well system, this is in support of a cell contact-mediated effect. Microglia might play an important role in the clearance of apoptotic cells. The uptake of apoptotic cells by microglia is tolerogenic and results in a reduced proinflammatory cytokine production and a reduced activation of encephalitogenic T cells. This might help to restrict an autoimmune inflammation and minimize damage in the inflamed brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available