4.7 Article

Requirement of functional ryanodine receptor type 3 for astrocyte migration

Journal

FASEB JOURNAL
Volume 15, Issue 13, Pages 84-+

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.01-0380fje

Keywords

RyR3 knockout mice; 4-chloro-m-cresol; in vitro wound-healing assay; cell migration

Funding

  1. Fondazione Telethon Funding Source: Custom
  2. Telethon [1151] Funding Source: Medline

Ask authors/readers for more resources

Astrocyte motility plays an important role in the response of the brain to injury and during regeneration. We used two in vitro assays, a wound-healing model and a chemotaxis assay, to study mechanisms that control astrocyte motility. Ryanodine receptors (RyR), intracellular calcium-release channels, modulate intracellular Ca2+ levels, and also motility: 1) blocking RyR with antagonizing concentration of ryanodine (200 muM) strongly attenuated motility and 2) motility of astrocytes cultured from homozygous RyR type 3 knockout mice was impaired strongly compared with wild-type. In contrast, MIP-1 alpha -induced chemotaxis was neither impaired in the presence of ryanodine nor in the cells from the knockout animals. Reverse transcription-polymerase chain reaction (RT-PCR) analysis combined with Western blotting and immunocytochemistry confirmed the expression of RyR type 3, but not type 1 or 2 in cultured and acutely isolated astrocytes. RyR in astrocytes are linked to Ca2+ signaling because the RyR agonist 4-chloro-m-cresol induced a release of Ca2+ from intracellular stores. These results indicate that astrocytes express only RyR type 3 and that this receptor is important for controlling astrocyte motility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available