4.7 Article

Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test

Journal

EXPERIMENTAL NEUROLOGY
Volume 172, Issue 1, Pages 92-99

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/exnr.2001.7777

Keywords

hippocampus; dentate gyrus; NMDA; pain; analgesia; formalin test; neural plasticity

Categories

Ask authors/readers for more resources

The hippocampus is an integral component of the limbic system and, as such, may contribute to the negative affect and avoidance motivation experienced during pain. A substantial body of evidence indicates that the hippocampus processes pain-related information, that some hippocampal neurons respond exclusively to painful stimulation, and that long-term anatomical changes occur in dentate gyrus neurons, following noxious physical stimulation. NMDA receptor antagonist drugs administered to the hippocampus interfere with long-term potentiation, learning, and memory; these same drugs, when applied to the spinal cord, prevent the long-term neurophysiological changes caused by noxious physical stimulation. This experiment tested whether blocking NMDA receptors in the hippocampal formation reduces nociceptive behaviors in an animal model of persistent human pain. The competitive NMDA receptor antagonist AP5 was injected into the dentate gyrus of alert, unrestrained rats either 5 min before or 15 min following the administration of a subcutaneous injection of formalin irritant. Pain behaviors in both acute and tonic phases of the formalin test were significantly reduced by AP5 treatments. These results support the hypothesis that the hippocampal formation is involved in pain-related neural processing and that NMDA receptor-sensitive mechanisms in the hippocampus are involved in pain perception and/or the expression of pain-related behaviors. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available