4.8 Article

Use of gold nanoparticles to enhance capillary electrophoresis

Journal

ANALYTICAL CHEMISTRY
Volume 73, Issue 21, Pages 5220-5227

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0104375

Keywords

-

Ask authors/readers for more resources

We describe here the use of gold nanoparticles to manipulate the selectivity between solutes in capillary electrophoresis. Two different gold-based nanoparticles were added to the run buffer. In one case, the nanoparticles were stabilized with citrate ions, but in another study, the gold nanoparticles were capped with mercaptopropionate ions (thiol-stablized). Citrate-stabilized gold nanoparticles were used in conjunction with capillaries treated with poly(diallyldimethylammonium chloride) (PDADMAC). The positively charged PDADMAC layer on the capillary walls adsorbs the negatively charged gold nanoparticles. The model solutes that were used to study the effect of the presence of the citrate-stabilized gold nanoparticles are structural isomers of aromatic acids and bases. The presence of the PDADMAC layer and the PDADMAC plus the gold nanoparticles changes both the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities influence the observed selectivities and the separations of the system. Thiol-stabilized gold nanoparticles were used without PDADMAC in the capillary. The model solutes studied in this part are various aromatic amines. In this case as well, the presence of the gold nanoparticles modifies the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities are manifested in selectivity alterations. The largest change in the selectivities occurs at low concentrations of the gold nanoparticles in the run buffer. The presence of nanoparticles improves the precision of the analysis and increases the separation efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available