4.2 Article

Neurodegeneration in Niemann-Pick type C disease mice

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 141, Issue 2, Pages 218-231

Publisher

SPRINGER
DOI: 10.1007/s002210100870

Keywords

Niemann-Pick type C disease; cholesterol storage; neurodegencration; silver staining

Categories

Funding

  1. NINDS NIH HHS [NS34339] Funding Source: Medline

Ask authors/readers for more resources

Niemann-Pick disease type C (NP-C) is an inherited neurodegenerative disorder associated with intracellular cholesterol and glycolipid trafficking defects. Two separate genes, NPC1 and NPC2, have been linked to NP-C. NPC1 encodes a polytopic membrane-bound protein with a putative sterol-sensing domain. NPC2 has been recently identified as epididymal secretory glycoprotein 1. The NPC1 protein functions in the vesicular redistribution of endocytosed lysosomal cargo, but how its inactivation leads to neurodegeneration is not known. The neurological symptoms of NP-C typically appear after a period of normal early development and reflect progressive degeneration of widespread brain regions. Here we have delineated the pattern of neurodegeneration in NP-C mice. whose genetic defect has been shown to be an inactivating mutation of the mouse NPC1 gene. The results reveal a spatially and temporally specific pattern of degeneration of nerve fibers followed by degeneration of neuronal cell bodies be-inning as early as day 9 and continuing throughout life. We have recently showed that in the primate brain, the NPC1 protein is localized predominantly within perisynaptic astrocytic processes. The present observations suggest that a functional disturbance in NPC1 could disrupt vesicular transport of cholesterol, glycolipids and possibly other endocytic cargo in alia. which is critical for maintaining the integrity of neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available