4.7 Article

Nonstoichiometric tungsten oxide based on hexagonal WO3

Journal

CRYSTAL GROWTH & DESIGN
Volume 1, Issue 6, Pages 473-477

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cg015545z

Keywords

-

Ask authors/readers for more resources

On the initial stage of reduction of hexagonal tungsten trioxide, h-WO3, the nonstoichiometric h-WO2.8 phase was synthesized. The X-ray powder diffraction analysis and subsequent refinement using the Rietveld Full Profile Matching & Integrated Intensities Refinement of X-ray and/or Neutron Data Programs (FullProf Version 3.5 Dec97-LLB-JRC) indicate that the crystal structure of the h-WO2.8 phase is ascribed to the UO3 structure type with lattice parameters a = 0.3625 nm and c = 0.3780 nm. The X-ray photoelectron spectroscopy (XPS) method was applied to study the electronic structure of the nonstoichiometric tungsten trioxide. The XPS valence band and core-level spectra of the h-WO2.8 phase and, for comparison, h-WO3 were derived. The formation of an additional near-Fermi subband, which is absent on the XPS valence-band spectrum of hexagonal tungsten trioxide, was observed on the spectrum of the nonstoichiometric hexagonal WO2.8 compound. Half-widths of the XPS valence band as well as both W 4f and O 1s core-level spectra increase somewhat when going from h-WO3 to h-WO2.8.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available