4.1 Article

The climatic significance of δ13C in subalpine spruces (Lotschental, Swiss Alps) -: A case study with respect to altitude, exposure and soil moisture

Journal

TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY
Volume 53, Issue 5, Pages 593-611

Publisher

CO-ACTION PUBLISHING
DOI: 10.1034/j.1600-0889.2001.530505.x

Keywords

-

Ask authors/readers for more resources

Few stable carbon isotope studies exist from high mountain regions which consider both climatological and ecological influences. This study is the first presenting delta C-13 tree ring records from the subalpine vegetation belt of the European Alps (Lotschental. Switzerland), Pooled late wood samples from several trees (Picea abies) per site were used for studies of spatial site comparisons with respect to altitude (upper timberline valley floor), exposure (NS) and soil Moisture (dry . moist). This investigation aims to assess how much these site conditions influence the climatic signal of delta C-13. The delta C-13 site records (1946-1995 AD, late wood cellulose) show a decreasing long-term trend reflecting the atmospheric delta C-13 decrease during this period. We apply a new method for the correction of this anthropogenically induced CO2 trend which considers changes in the atmospheric WC source value and plant physiological reaction due to changes in the partial pressure of atmospheric CO2. The delta C-13 relationship to all investigated months' climatic parameters I temperature, precipitation, relative air humidity was found to be very strong with highest correlations in July, August, the time of late wood development (maximum r(T) = 0.74, r(PPJ) = -0.75, r(RH) = -0.79). In contrast to tree ring width and density Studies the observed temperature signal is not related to the altitude of the sample sites, The precipitation signal extracted from the carbon isotope time series increases with decreasing altitude and it remains strong at the upper timber line. This indicates the suitability of this isotope proxy for reconstruction of atmospheric humidity. Single extreme events (pointer years) provide stronger and more uniform reactions for dry warm than for cool-humid summer conditions. Furthermore. the sites with moderately dry or moist soil conditions react more strongly and consistently than the extremely dry and moist sites at high elevation. Site exposure influences the absolute delta C-13 values (S-exposure high versus N-exposure low), but does not necessarily obscure the climatic signal of the stable isotope records.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available