3.8 Article

A comparison of four methods for simulating the diffusion process

Journal

BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS
Volume 33, Issue 4, Pages 443-456

Publisher

PSYCHONOMIC SOC INC
DOI: 10.3758/BF03195402

Keywords

-

Ask authors/readers for more resources

Four methods for the simulation of the Wiener process with constant drift and variance are described. These four methods are (1) approximating the diffusion process by a random walk with very small time steps; (2) drawing directly from the joint density of responses and reaction time by means of a (possibly) repeated application of a rejection algorithm; (3) using a discrete approximation to the stochastic differential equation describing the diffusion process; and (4) a probability integral transform method approximating the inverse of the cumulative distribution function of the diffusion process. The four methods for simulating response probabilities and response times are compared on two criteria: simulation speed and accuracy of the simulation, It is concluded that the rejection-based and probability integral transform method perform best on both criteria, and that the stochastic differential approximation is worst. An important drawback of the rejection method is that it is applicable only to the Wiener process, whereas the probability integral transform method is more general.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available