4.2 Article

Deletion of one of two Escherichia coli genes encoding putative Na+/H+ exchangers (ycgO) perturbs cytoplasmic alkali cation balance at low osmolarity

Journal

MICROBIOLOGY-SGM
Volume 147, Issue -, Pages 3005-3013

Publisher

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/00221287-147-11-3005

Keywords

NHE-like proteins; Escherichia coli; osmosensitivity

Categories

Funding

  1. NHLBI NIH HHS [HL16101] Funding Source: Medline

Ask authors/readers for more resources

Two genes in the Escherichia coli genome, b4065 (yjcE) and b1191 (ycgO), are similar to genes encoding eukaryotic Na+/H+ exchangers. Mutants were constructed in which yjcE (GRN11), ycgO (GRF55) or both (GRD22) were inactivated. There was no change in respiration-driven Na+ efflux in any of the mutants when grown in media containing 50-500 mM Na+. The only striking finding was that growth of GRF55 was impaired at low osmolarity. In complex low-salt medium, GRF55 grew at a wild-type rate for three to four generations but then stopped; the growth was partially recovered after a pause, the length of which was dependent on salt concentration. Measurement of cytoplasmic alkali cations showed that an abrupt loss of about one-half of the intracellular K+ preceded the pause. When grown in low-salt medium with only 20 mM added Na+, GRF55 also lost the ability to maintain a sodium concentration gradient. However, this phenomenon appears to be a secondary effect of the ycgO deletion. The double mutant GRD22 has the same properties as GRF55; no additional effect was found. The data indicate that neither ycgO nor yjeE participates in respiration-driven Na+ extrusion. Instead, ycgO is required for growth at low osmolarity. Hence it is concluded that ycgO participates in cell volume regulation, and accordingly it is suggested that ycgO be renamed cvrA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available