4.8 Editorial Material

DAMP-mediated autophagy contributes to drug resistance

Journal

AUTOPHAGY
Volume 7, Issue 1, Pages 112-114

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/auto.7.1.14005

Keywords

DAMP; autophagy; HMGB1; chemotherapy resistance; leukemia; PI3KC3; ERK

Categories

Ask authors/readers for more resources

Damage-associated molecular pattern molecules (DAMPs) are cellularly derived molecules that can initiate and perpetuate immune responses following trauma, ischemia and other types of tissue damage in the absence of pathogenic infection. High mobility group box 1 (HMGB1) is a prototypical DAMP and is associated with the hallmarks of cancer. Recently we found that HMGB1 release after chemotherapy treatment is a critical regulator of autophagy and a potential drug target for therapeutic interventions in leukemia. Overexpression of HMGB1 by gene transfection rendered leukemia cells resistant to cell death; whereas depletion or inhibition of HMGB1 and autophagy by RNA interference or pharmacological inhibitors increased the sensitivity of leukemia cells to chemotherapeutic drugs. HMGB1 release sustains autophagy as assessed by microtubule-associated protein 1 light chain 3 (LC3) lipidation, redistribution of LC3 into cytoplasmic puncta, degradation of p62 and accumulation of autophagosomes and autolysosomes. Moreover, these data suggest a role for HMGB1 in the regulation of autophagy through the PI3KC3-MEK-ERK pathway, supporting the notion that HMGB1-induced autophagy promotes tumor resistance to chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available