4.6 Article Proceedings Paper

Hepatitis C virus core protein inhibits human T lymphocyte responses by a complement-dependent regulatory pathway

Journal

JOURNAL OF IMMUNOLOGY
Volume 167, Issue 9, Pages 5264-5272

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.9.5264

Keywords

-

Categories

Funding

  1. NIDDK NIH HHS [DK57939] Funding Source: Medline

Ask authors/readers for more resources

Complement proteins are involved in early innate immune responses against pathogens and play a role in clearing circulating viral Ags from the blood of infected hosts. We have previously demonstrated that hepatitis C virus (HCV) core, the first protein to be expressed and circulating in the blood of infected individuals, inhibited human T cell proliferative response through interaction with the complement receptor, globular domain of Clq receptor (gC1qR). To investigate the mechanisms of HCV core/gC1qR-induced inhibition of T cell proliferation, we examined the effect of core protein on the early events in T cell activation. We found that HCV core inhibited phosphorylation of extracellular signal-regulated kinase (ERK) and mitogen-activated ERK kinase (MEK). HCV core-induced impairment of ERK/MEK mitogen-activated protein kinase resulted in the inhibition of IL-2 and IL-2R alpha gene transcription, which led to the inhibition of IL-2 production and high-affinity IL-2R expression. Importantly, the ability of anti-gC1qR Ab treatment to reverse HCV core-induced inhibition of ERK/MEK phosphorylation reveals that the interaction between HCV core and gC1qR is linked to the interference of ERK/MEK mitogen-activated protein kinase activation. These results imply that HCV core-induced blockage of intracellular events in T cell activation by a complement-dependent regulatory pathway may play a critical role in the establishment of HCV persistence during the acute phase of viral infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available