4.8 Article

Arabidopsis ATG6 is required to limit the pathogen-associated cell death response

Journal

AUTOPHAGY
Volume 4, Issue 1, Pages 20-27

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/auto.5056

Keywords

programmed cell death; autophagy; ATG6/BECLIN 1; pseudomonas syringae; Arabidopsis; innate immunity

Categories

Funding

  1. NIGMS NIH HHS [GM62625] Funding Source: Medline
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM062625] Funding Source: NIH RePORTER

Ask authors/readers for more resources

To begin to understand the interplay between autophagy and the hypersensitive response (HR), a type of programmed cell death (PCD) induced during plant innate immunity, we generated ATG6 antisense plants in the genetically tractable Arabidopsis thaliana system. AtATG6 antisense (AtATG6-AS) plants senesce early and are sensitive to nutrient starvation, suggestive of impairment of autophagic function in these plants. Additionally, these plants exhibited multiple developmental abnormalities, a phenomenon not observed in other AtATG mutants. AtATG6-AS plants produced fewer Monodansylcadaverine (MDC) and Lyso Tracker (IT) stained-autolysosomes in response to carbon and nitrogen starvation indicating that AtATG6 plays a role in the autophagic pathway in Arabidopsis. Interestingly, the level of AtATG6 mRNA in wild type Col-0 Arabidopsis plants is increased during the early phase of virulent and avirulent Pseudomonas syringae pv tomato (Pst) DC3000 infection suggesting that AtATG6 plays an important role during pathogen infection. In AtATG6-AS plants, HR-PCD induced upon infection with avirulent Pst DC3000 carrying the AvrRpm1 effector protein is not able to be contained at the infection site and spreads into uninfected tissue. Additionally, the disease-associated cell death induced by the infection of virulent Pst DC3000 bacteria is also partially misregulated in AtATG6-AS plants. Therefore, the AtATG6 antisense plants characterized here provide an excellent genetic model system to elucidate the molecular mechanisms by which autophagy regulates pathogen-induced cell death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available