4.6 Article

Control of myoblast proliferation with a synthetic ligand.

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 44, Pages 41191-41196

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M103191200

Keywords

-

Funding

  1. NHLBI NIH HHS [P01HL03174, R01HL61553, HL07312, R24HL64387-01, K08HL03094] Funding Source: Medline

Ask authors/readers for more resources

Skeletal myoblast grafts can form contractile tissue to replace scar and repair injured myocardium. Although potentially therapeutic, generating reproducible and sufficiently large grafts remains a challenge. To control myoblast proliferation in situ, we created a chimeric receptor composed of a modified FK506-binding protein (F36V) fused with the fibroblast growth factor receptor-1 cytoplasmic domain. Mouse MM14 myoblasts were transfected with this construct and treated with AP20187, a dimeric F36V ligand, to induce receptor dimerization. Transfected myoblasts proliferated in response to dimerizer (comparable with basic fibroblast growth factor (bFGF) treatment), whereas the dimerizer had no effect on non-transfected cells. Similar to bFGF treatment, dimerizer treatment blocked myotube formation and myosin heavy chain expression and stimulated mitogen-activated protein (MAP) kinase phosphorylation in transfected cells. Non-transfected cells differentiated normally and showed no MAP kinase phosphorylation with dimerizer treatment. Furthermore, myoblasts treated with dimerizer for 30 days in culture reduced MAP kinase phosphorylation, withdrew from the cell cycle, and differentiated normally upon drug withdrawal, demonstrating reversibility of the effect. Thus, forced dimerization of the fibroblast growth factor receptor-1 cytoplasmic domain reproduces critical aspects of bFGF signaling in myoblasts. We hypothesize that in vivo administration of AP20187 following myoblast grafting may allow control over graft size and ultimately improve cardiac function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available