4.7 Article

Interaction between PEVK-titin and actin filaments - Origin of a viscous force component in cardiac myofibrils

Journal

CIRCULATION RESEARCH
Volume 89, Issue 10, Pages 874-881

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/hh2201.099453

Keywords

connectin; passive tension; myofibril mechanics; myocardial viscosity; actin binding protein

Ask authors/readers for more resources

The giant muscle protein titin contains a unique sequence, the PEVK domain, the elastic properties of which contribute to the mechanical behavior of relaxed cardiomyocytes. Here, human N2-B-cardiac PEVK was expressed in Escherichia coli and tested-along with recombinant cardiac titin constructs containing immunoglobulin-like or fibronectin-like domains-for a possible interaction with actin filaments. In the actomyosin in vitro motility assay, only the PEVK construct inhibited actin filament sliding over myosin. The slowdown occurred in a concentration-dependent manner and was accompanied by an increase in the number of stationary actin filaments. High [Ca2+] reversed PEVK effect. PEVK concentrations greater than or equal to 10 mug/mL caused actin bundling. Actin-PEVK association was found also in actin fluorescence binding assays without myosin at physiological ionic strength. In cosedimentation assays, PEVK-titin interacted weakly with actin at 0 degreesC, but more strongly at 30 degreesC, suggesting involvement of hydrophobic interactions. To probe the interaction in a more physiological environment, nonactivated cardiac myofibrils were stretched quickly, and force was measured during the subsequent hold period. The observed force decline could be fit with a three-order exponential-decay function, which revealed an initial rapid-decay component (time constant, 4 to 5 ms) making up 30% to 50% of the whole decay amplitude. The rapid, viscous decay component, but not the slower decay components, decreased greatly and immediately on actin extraction with Ca2+-independent gelsolin fragment, both at physiological sarcomere lengths and beyond actin-myosin overlap. Steady-state passive force dropped only after longer exposure to gelsolin. We conclude that interaction between PEVK-titin and actin occurs in the sarcomere and may cause viscous drag during diastolic stretch of cardiac myofibrils. The interaction could also oppose shortening during contraction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available