4.4 Article

Inhibitor double occupancy in the Qo pocket of the chloroplast cytochrome b6f complex

Journal

BIOCHEMISTRY
Volume 40, Issue 45, Pages 13407-13412

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi015774m

Keywords

-

Ask authors/readers for more resources

Electron paramagnetic resonance (EPR) spectra of the Rieske 2Fe-2S cluster revealed that two molecules of the inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) can bind to each monomer of the spinach cytochrome (cyt) b(6)f complex, both in isolated form and in intact thylakoid membranes. Binding to the high-affinity site, which accounts for the observed inhibitory effects, caused small shifts in the g(x) transition of the 2Fe-2S cluster EPR spectrum, similar to those induced by stigmatellin or 2-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenyl ether (DNP-INT). Occupancy of the low-affinity site was only observed after addition of superstoichiometric amounts of the inhibitor and was accompanied by the appearance of a g = 1.94 EPR signal. The shape of the equilibrium binding titration curve, the effects on the 2Fe-2S EPR spectrum, and the ability of the DBMIB binding to displace DNP-INT were consistent with two molecules of DBMIB binding at the Q(o) pocket, with the strongly binding species binding close to the 2Fe-2S cluster. Possible implications of these findings for so-called double-occupancy models for Q(o) site catalysis are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available