4.6 Article Proceedings Paper

On the transport of small bubbles under developing channel flow in a buoyant gas-evolving electrochemical cell

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 40, Issue 23, Pages 5228-5233

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie001073u

Keywords

-

Ask authors/readers for more resources

A gas-evolving electrochemical cell with natural convection due to buoyancy is modeled using a hydrodynamic two-phase mixture model. Physical parameters are taken from the chlorate process, where hydrogen is evolved at the cathode. Constitutive closure laws, based on empirical relations developed for sedimenting particles, give the motion of the monodisperse gas phase relative to the mixture. Typical results display the effect of bubble size, channel width, and current density on the buoyant flow rate of the electrolyte through the channel. Results from the numerical simulations are also compared to data measured by Boissonneau and Byrne(1) on a cell with gas evolution on both the anode and the cathode. Qualitatively good agreement was found.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available