4.6 Article

Multiple carboxyl-terminal regions of the EBV oncoprotein, latent membrane protein 1, cooperatively regulate signaling to B lymphocytes via TNF receptor-associated factor (TRAF)-dependent and TRAF-independent mechanisms

Journal

JOURNAL OF IMMUNOLOGY
Volume 167, Issue 10, Pages 5805-5813

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.167.10.5805

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA66570] Funding Source: Medline
  2. NIAID NIH HHS [AI28847] Funding Source: Medline
  3. NIDDK NIH HHS [DK25295] Funding Source: Medline

Ask authors/readers for more resources

Latent membrane protein I (LMP1) is an EBV-encoded transforming protein that strongly mimics the B cell-activating properties of a normal cellular membrane protein, CD40. LMP1 and CD40 both associate with the cytoplasmic adapter proteins called TNFR-associated factors (TRAFs). TRAFs 1, 2, and 3 bind to a region of LMP1 that is essential for EBV to transform B lymphocytes, carboxyl-terminal activating region (CTAR) 1. However, studies of transiently overexpressed LMP1 molecules, primarily in epithelial cells, indicated that a second region, CTAR2, is largely responsible for LMP1-mediated activation of NF-kappaB and c-Jun N-terminal kinase. To better understand LMP1 signaling in B lymphocytes, we performed a structure-function analysis of the LMP1 C-terminal cytoplasmic domain stably expressed in B cell lines. Our results demonstrate that LMP1-stimulated Ig production, surface molecule up-regulation, and NF-kappaB and c-Jun N-terminal kinase activation require both CTAR1 and CTAR2, and that these two regions may interact to mediate LMP1 signaling. Furthermore, we find that the function of CTAR1, but not CTAR2, correlates with TRAF binding and present evidence that as yet unidentified cytoplasmic proteins may associate with LMP1 to mediate some of its signaling activities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available