4.7 Article

Progressive neuronal and motor dysfunction in mice overexpressing the serine protease inhibitor protease nexin-1 in postmitotic neurons

Journal

JOURNAL OF NEUROSCIENCE
Volume 21, Issue 22, Pages 8830-8841

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.21-22-08830.2001

Keywords

PN-1; motor behavior; motor neuron disease; proteolytic inhibition; transgenic mice; layer V pyramidal cells; muscle atrophy; axonopathy

Categories

Ask authors/readers for more resources

Perturbation of the homeostasis between proteases and their inhibitors has been associated with lesion-induced or degenerative neuronal changes. Protease nexin-1 (PN-1), a secreted serine protease inhibitor, is constitutively expressed in distinct neuronal cell populations of the adult CNS. In an earlier study we showed that transgenic mice with ectopic or increased expression of PN-1 in postnatal neurons have altered synaptic transmission. Here these mice are used to examine the impact of an extracellular proteolytic imbalance on long-term neuronal function. These mice develop disturbances in motor behavior from 12 weeks on, with some of the histopathological changes described in early stages of human motor neuron disease, and neurogenic muscle atrophy in old age. In addition, sensorimotor integration, measured by epicranial multichannel recording of sensory evoked potentials, is impaired. Our results suggest that axonal dysfunction rather than cell death underlies these phenotypes. In particular, long projecting neurons, namely cortical layer V pyramidal and spinal motor neurons, show an age-dependent vulnerability to PN-1 overexpression. These mice can serve to study early stages of in vivo neuronal dysfunction not yet associated with cell loss.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available