4.6 Article

Plane-wave DFT-LDA calculation of the electronic structure and absorption spectrum of copper

Journal

PHYSICAL REVIEW B
Volume 64, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.64.195125

Keywords

-

Ask authors/readers for more resources

We present an accurate, first-principles study of the electronic structure and absorption spectrum of bulk copper within density functional theory in the local density approximation, including the study of intraband transitions. We construct norm-conserving pseudopotentials (PP's) including the 3d shell (and optionally the underlying 3s and 3p shells) in the valence and requiring a relatively small plane-wave basis (60 and 140 Ry cutoff, respectively). As a consequence, these PP's are strongly nonlocal, yielding macroscopically wrong results in the absorption spectrum when momentum matrix elements are computed naively. Our results are compared with experimental photoemission, absorption, and electron energy loss data, and suggest nontrivial self-energy effects in the quasiparticle spectrum of Cu.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available