4.8 Article

How many-particle interactions develop after ultrafast excitation of an electron-hole plasma

Journal

NATURE
Volume 414, Issue 6861, Pages 286-289

Publisher

NATURE PORTFOLIO
DOI: 10.1038/35104522

Keywords

-

Ask authors/readers for more resources

Electrostatic coupling between particles is important in many microscopic phenomena found in nature. The interaction between two isolated point charges is described by the bare Coulomb potential, but in many-body systems this interaction is modified as a result of the collective response of the screening cloud surrounding each charge carrier(1,2). One such system involves ultrafast interactions between quasi-free electrons in semiconductors(3,4)-which are central to high-speed and future quantum electronic devices. The femtosecond kinetics of nonequilibrium Coulomb systems has been calculated using static(5,6) and dynamical(7,8) screening models that assume the instantaneous formation of interparticle correlations. However, some quantum kinetic theories(9-14) suggest that a regime of unscreened bare Coulomb collisions might exist on ultrashort timescales. Here we monitor directly the temporal evolution of the charge-charge interactions after ultrafast excitation of an electron-hole plasma in GaAs. We show that the onset of collective behaviour such as Coulomb screening and plasmon scattering exhibits a distinct time delay of the order of the inverse plasma frequency, that is, several 10(-14) seconds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available