4.6 Article

ADAM15 overexpression in NIH3T3 cells enhances cell-cell interactions

Journal

EXPERIMENTAL CELL RESEARCH
Volume 271, Issue 1, Pages 152-160

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/excr.2001.5353

Keywords

disintegrin; metalloprotease; cell-cell adhesion; cell-matrix interaction; retroviral vector

Funding

  1. NHLBI NIH HHS [HL18645, HL03174] Funding Source: Medline

Ask authors/readers for more resources

ADAM15 is a member of the family of metalloprotease-disintegrins that have been shown to interact with integrins in an RGD- and non-RGD-dependent manner. In the present study, we examined the effects of ADAM15 overexpression on cell-matrix and cell-cell interactions in NIH3T3 cells. Tetracycline-regulated ADAM15 overexpression in NIH3T3 cells leads to an inhibition of migration on a fibronectin-coated filter in a Boyden chamber assay and in a scratch wound model. The effects of ADAM15 overexpression on cell migration are not due to changes in matrix attachment or to the lack of extracellular signal-regulated kinase signaling response to PDGF or fibronectin. However, a decrease in monolayer permeability with ADAM15 overexpression and altered cell morphology suggest a possible increase in cell-cell interaction. Analysis of adhesion of NIH3T3 cells to a polyclonal population of cells retrovirally transduced to overexpress ADAM15 demonstrates a 45% increase in cell adhesion, compared with enhanced green fluorescent protein-expressing control cells. In addition, we demonstrate localization of HA-epitope-tagged ADAM15 to cell-cell contacts in an epithelial cell line that forms extensive cell-cell contact structures. Thus, overexpression. of ADAM15 in NIH3T3 cells appears to enhance cell-cell interactions, as suggested by decreased cell migration, altered cell morphology at the wound edge, decreased monolayer permeability, and increased cell adhesion to monolayers of cells expressing ADAM15 by retroviral transduction. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available