4.8 Article

Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.231273398

Keywords

-

Funding

  1. NHLBI NIH HHS [HL61781, HL56387, P50 HL056387] Funding Source: Medline
  2. NIDCR NIH HHS [R01 DE138283] Funding Source: Medline
  3. NIEHS NIH HHS [P30 ES006096, ES 06096] Funding Source: Medline

Ask authors/readers for more resources

Although aqua porin 5 (AQP5) is the major water channel expressed in alveolar type I cells in the lung, its actual role in the lung is a matter of considerable speculation. By using immunohistochemical staining, we show that AQP5 expression in mouse lung is not restricted to type I cells, but is also detected in alveolar type II cells, and in tracheal and bronchial epithelium. Aqp5 knockout (Aqp5(-/-)) mice were used to analyze AQP5 function in pulmonary physiology. Compared with Aqp5(+/+) mice, Aqp5(-/-) mice show a significantly increased concentration-dependent bronchoconstriction to intravenously administered Ach, as shown by an increase in total lung resistance and a decrease in dynamic lung compliance (P < 0.05). Likewise, Penh, a measure of bronchoconstriction, was significantly enhanced in Aqp5(-/-) mice challenged with aerosolized methacholine (P < 0.05). The hyperreactivity to bronchoconstriction observed in the Aqp5(-/-) mice was not due to differences in tracheal smooth muscle contractility in isolated preparations or to altered levels of surfactant protein B. These data suggest a novel pathway by which AQP5 influences bronchoconstriction. This observation is of special interest because studies to identify genetic loci involved in airway hyperresponsiveness associated with asthma bracket genetic intervals on human chromosome 12q and mouse chromosome 15, which contain the Aqp5 gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available