4.6 Article

A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases - The importance of folding kinetics and solution environment

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 48, Pages 44541-44550

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M106693200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM49309] Funding Source: Medline

Ask authors/readers for more resources

Escherichia coli malate dehydrogenase (EcMDH) and its eukaryotic counterpart, porcine mitochondrial malate dehydrogenase (PmMDH), are highly homologous proteins with significant sequence identity (60%) and virtually identical native structural folds. Despite this homology, EcMDH folds rapidly and efficiently in vitro and does not seem to interact with GroE chaperonins at physiological temperatures (37 degrees C), whereas PmMDH folds much slower than EcMDH and requires these chaperonins to fold to the native state at 37 degrees C. Double jump experiments indicate that the slow folding behavior of PmMDH is not limited by proline isomerization. Although the folding enhancer glycerol (<5 M) does not alter the renaturation kinetics of EcMDH, it dramatically accelerates the spontaneous renaturation of PmMDH at all temperatures tested. Kinetic analysis of PmMDH renaturation with increasing glycerol concentrations suggests that this osmolyte increases the on-pathway kinetics of the monomer folding to assembly-competent forms. Other osmolytes such as trimethylamine N-oxide, sucrose, and betaine also reactivate PmMDH at nonpermissive temperatures (37 C). Glycerol jump experiments with preformed GroEL.PmMDH complexes indicate that the shift between stringent (requires ATP and GroES) and relaxed (only requires ATP) complex conformations is rapid (<3-5 s). The similarity in irreversible misfolding kinetics of PmMDH measured with glycerol or the activated chaperonin complex (GroEL.GroES.ATP) suggests that these folding aids may influence the same step in the PmMDH folding reaction. Moreover, the interactions between glycerol-induced PmMDH folding intermediates and GroEL.GroES.ATP are diminished. Our results support the notion that the protein folding kinetics of sequentially and structurally homologous proteins, rather than the structural fold, dictates the GroE chaperonin requirement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available