4.7 Article

Mechanisms of acid-catalyzed Z/E isomerization of imines

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 66, Issue 24, Pages 7979-7985

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo010067k

Keywords

-

Funding

  1. NIGMS NIH HHS [GM08256] Funding Source: Medline

Ask authors/readers for more resources

The kinetics and mechanism of acid-catalyzed Z/E isomerization of O-methylbenzohydroximoyl chloride (1Za and 1Ea), methyl O-methylbenzohydroximate (1Zb and 1Eb), ethyl O-methylbenzohydroximate (1Zc and 1Ec and five para and meta substituted derivatives), O-methylcinnamohydroximoyl chloride (2Za and 2Ea), and methyl O-methylcinnamohydroximate (2Zb and 2Zb) have been investigated. The kinetics of Z/E isomerization of these imines have been studied in glacial acetic acid (1Ea and 1Zc) and in dioxane solutions containing HCl, trifluoromethanesulfonic acid, or tetrafluoroboric acid (1Ea, 1Zb, 2Ea, and 2Zb). The isomerization takes place by either (a) rotation about the carbon-nitrogen double bond of the protonated imine (iminium ion rotation) or (b) nucleophilic attack on the protonated imine to form a tetrahedral intermediate that undergoes stereomutation and loss of the nucleophile (nucleophilic catalysis). The hydroximoyl chlorides 1Ea and 2Ea only isomerize by the nucleophilic catalysis mechanism. The hydroximate 1Zb appears to be capable of isomerizing by either mechanism. The hydroximate 2Zb may be isomerizing only by iminium ion rotation. Theoretical calculations support the notion that increased conjugation in the protonated imine increases the rate of iminium ion rotation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available