4.5 Article

Hydrogen bonding in sulfonamides

Journal

JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 90, Issue 12, Pages 2058-2077

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/jps.1157

Keywords

sulfonamide; hydrogen-bond pattern; crystal structure; graph set; polymorph

Ask authors/readers for more resources

The hydrogen-bond connectivity in 39 sulfonamide crystal structures has been deciphered and described using graph set notation. The hydrogen-bond connectivity observed is used to gain information on hydrogen-bond preferences of specific donor and acceptor atoms of related sulfonamide molecules. The amido protons show a greater preference for hydrogen bonding to amidine nitrogens and cocrystal guests, whereas the amino protons show a greater preference for hydrogen bonding to sulfonyl oxygens, forming the only dominant hydrogen-bond pattern, a chain with an eight atom repeat unit. Preferential hydrogen bonding between the amidine group and the guest carboxyl group was observed in five cocrystal structures of sulfamethazine. Sulfamoxole displays a conformation and a hydrogen-bond motif not seen in any other structures. Sulfamerazine and sulfamethazine, differing by a methyl group, show no similarity in hydrogen-bond pattern, whereas sulfamethoxydiazine and sulfamethoxymethazine, which have sterically similar but chemically different heterocycles, show a striking similarity in hydrogen-bond pattern. Sulfamethoxydiazine, sulfamethoxymethazine, and sulfamethoxazole also show a large variation in hydrogen-bond pattern between polymorphs. Studies such as this, by revealing details of hydrogen-bonding patterns in closely related organic crystal structures, can potentially provide predictive capability among the crystal structures of pharmaceutical solids. (C) 2001 Wiley-Liss, Inc, and the American Pharmaceutical Association J Pharm Sci 90:2058-2077, 2001.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available